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1 Introduction

Figure 1: The AURIGA detector at Italy

The resonant bar GW detector is a precursor to modern interferometric experiments,
developed by Joseph Weber in the 1960s and replicated by several other groups all over
the world. They work on the idea that a GW wave passing through the bar would
cause it to resonate, and even a brief burst would leave the bar ‘ringing’ for several
minutes. Measuring these vibrations would let us detect gravitational waves.
They failed to detect any gravitational wave events as the apparatus was only sensitive
to extremely loud ones, like supernovae within our own galaxy estimated to only occur
a few times a century. But the instrumentation techniques that were developed for
reaching extremely low sensitivities created the expertise required to make LIGO and
other current missions a success.

2 Measurement Challenges

As we saw in class, for a burst with amplitude h0, oscillations in the fundamental
mode of a bar are ξ0 ∼ Lh0. For a supernova in our own galaxy, an extremely rare
event estimated to happen a few times every century, h0 is at most of the order of
10−20. To have a realistic shot at detecting even such events, we must be able to
sensitive to h0 ∼ 10−21, which gives us an oscillation amplitude of ξ0 ∼ 3.5 × 10−21,
assuming we use one of the largest[1] Weber bars ever made, the one located at Bell
Labs. This is of course, a million times smaller than the size of a proton, leading to
the development ingenious methods of detection and noise control. Although these
bars never led to a detection and were the subject of controversy due to the actions
of their pioneer, these efforts enabled the successful interferometric gravitational wave
detectors we have today. To analyse how scientific collaborations around the world
designed experiments to detect displacements at such a tiny scale, we will first examine
the experimental setup required for these attempts and move on to focus on the noise
sources that would hinder them.
There are a few advantages to the bar setup which aid our measurements, mainly that
we primarily wish to measure coherent displacements of a large surface, over which
random microscopic fluctuations would cancel out. Also, intuitively, thermal noise
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cannot easily generate vibrations in a large and heavy object. Additionally, while
ξ0(t) appears to be prohibitively small, we only need to focus on certain frequency
ranges where GWs are would make the bar resonate, and thus look for spikes in a
particular frequency window of ξ̃0(ω) and not the full frequency range. This is another
fact that experimentalists have used to their advantage, as detecting such signals over
the entire frequency space would be extremely daunting.

3 The double oscillator

To measure these displacements, we need to use transducers, which are devices which
convert displacements to an electrical signal. Particularly, we try to use resonant
transducers, which mechanically amplify the displacements in question before con-
verting them to signals. Resonant transducers involve coupling the bar with another
oscillator that has a light mass. To model this system, we can assume an oscillator
with effective mass m0(= M/2 for resonant bars) and frequency ω0 to be coupled to
another oscillator with effective mass and frequency of mt and ωt. Figure 1 shows a
schematic diagram of such an oscillator, with displacements of the bar and transducer
from their respective equilibrium positions given by ξ0(t) and ξt(t). To analyse the

Figure 2: Schematic diagram of a double oscillator [2]

dynamics of this system(initially without considering dissipation effects), we look at
its Lagrangian-

L =
1

2
m0ξ̇

2
0 +

1

2
mtξ̇

2
t − V (ξ0, ξt) (1)

where,

V (ξ0, ξt) =
1

2
m0ω

2
0ξ

2
0 +

1

2
mtω

2
t (ξt − ξ0)

2 (2)

Defining µ = mt/m0, and assuming external(due to GWs) forces F0(t) and Ft(t) acting
on the masses we get,

ξ̈0 + ω2
0ξ0 + µω2

t (ξ0 − ξt) =
F0(t)

m0

(3)

ξ̈t + ω2
t (ξt − ξ0) =

Ft(t)

mt

(4)

We can find the response of this system to an impulsive force on the bar, like that
imparted by a GW burst. Due to its low mass, this would not affect the transducer.
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Thus, we can set F0/m0 = a0δ(t) and Ft = 0 and solve this system in the Fourier
domain, obtaining

ξ̃0(ω) = a0
−ω2 + ω2

t

(ω2 − ω2
+) (ω

2 − ω2
−)

, (5)

ξ̃t(ω) = a0
ω2
t

(ω2 − ω2
+) (ω

2 − ω2
−)

(6)

where ω2
± are the two resonant frequencies, which are the roots of

ω4 − (ω2
0 + (1 + µ)ω2

t )ω
2 + ω2

0ω
2
t = 0 (7)

For a resonant transducer, µ << 1 leads to ω± ≈ ω0

(
1± µ/

√
2 +O(µ)

)
We can evaluate the Fourier transform of equations 21 and 6 by including all four poles
for t > 0 after some analysis and applying Cauchy theorem. This gives us

ξ0(t) ≃
a0
ω0

sinω0t cosωbt (8)

ξt(t) ≃ − a0
ω0

√
µ
cosω0t sinωbt (9)

Where ωb = 0.5 · ω0
√
µ << ω0 is the beat frequency.

Figure 3: Displacements of the bar and transducer for µ = 10−3

From the plots above, we can see how energy flows periodically between the bar and
transducer. Evidently, the amplitude of displacement in the transducer is significantly
larger than that of the bar, leading to a mechanical amplification with a gain of 1/

√
µ.

Lower values of mt are thus favourable, but masses that are too light are subjected to
high levels of thermal noise.
Introducing dissipation in this system, the following equations replace 3 and 4

m0

[
ξ̈0 + ω2

0ξ0 + µω2
t (ξ0 − ξt)

]
= F0 + fdiss

0 , (10)

mt

[
ξ̈t + ω2

t (ξt − ξ0)
]
= Ft + fdiss

t , (11)

where, dissipative forces fdiss
0 , fdiss

t are

fdiss
0 = −m0γ0ξ̇0 −mtγt

(
ξ̇0 − ξ̇t

)
, (12)

fdiss
t = −mtγt

(
ξ̇t − ξ̇0

)
, (13)
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Figure 4: The squared moduli of transfer functions of bar and transducer

Here γ0 and γt are related to the quality factors of the bar and transducer by Q0 =
ω0/γ0 and Qt = ωt/γt. The Fourier domain solution for the modified differential
equations comes out to be

ξ̃t(ω) =

(
F̃0(ω)/m0

)
ω2
0 −

(
F̃t(ω)/mt

)
(ω2 − ω2

0 + iωγ0)

(ω2 − ω2
+ + iωγ̄) (ω2 − ω2

− + iωγ̄)
(14)

Since we are only interested in the effects of GWs on this system, we can set F̃0(ω) =
− (2L/π2)m0ω

2h̃(ω) and F̃t(ω) = 0. After doing this, we can obtain a transfer function
for the transducer’s response to a GW

Tt(ω) = −2L

π2

ω2
0ω

2

(ω2 − ω2
+ + iωγ̄) (ω2 − ω2

− + iωγ̄)
(15)

where γ̄ = (γ0+ γt)/2. This quantity determines the extent of dissipation, and we can
then define an overall mechanical quality factor of this system by γ̄ = ω0/Qm so that
2/Qm = (1/Q0 + 1/Qt). Qm typically reaches values on the order of 106. The two
peak values of the transducer transfer function are much higher than that of the bar
alone. This transfer function has been visualised in Figure 4.

4 The resonant transducer

After the double oscillator amplifies the displacement, it must be next readout by
transforming it to an electrical signal. Transducers generally use the small displace-
ments to modulate a stored electromagnetic field. Commonly used for this purpose are
capacitive transducers, where one plate of the capacitor is the light mass itself while
the other is rigidly supported by the large mass.
The electrical signal produced by this transducer is still quite low and must be ampli-
fied. A SQUID(Superconducting QUantum Interference Device) is the ideal amplifier
for this task at cryogenic temperatures. However, the large output impedance(∼ 105Ω)
of the transducer must be matched with the small input impedance(∼ 10−2Ω) of the
SQUID, and a transformer is used for this. This acts as an LC circuit, making the
bar+transducer+circuit system a triple oscillator. This is very complicated to anal-
yse, but we can qualitatively understand things by figuring out the coupling of the
transducer and the electric oscillator, as we did before for the double oscillator.
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Figure 5: Schematic diagram of a capacitive transducer [2]

We note that the output of the transducer, V depends linearly on the displacement
ξt. In the Fourier domain, this can be written as Ṽ (ω) = αξ̃t. Here we approximate
α(ω) ∼ iω to be roughly constant over the small frequency range of interest, and pick
its value at ω0. This gives us

V (t) = Z21ξ̇(t) (16)

where Z21 = α/(−iω0). Now, the ratio of EM and elastic energies gives us a measure
of energy transfer between the transducer and the LC oscillator

β ≡ Eem

Eelas

=
Cα2

mtω2
0

=
α2

mtω3
0|Z|

(17)

This equation helps illustrate the advantage of the resonant inducer, as β is inversely
proportional to mt as we can see. If instead this readout system would directly be
coupled to the bar, it would be m0 in the denominator which is orders of magnitude
larger. The resonant transducer thus plays the role of a mechanical transformer,
coupling the high mechanical output impedance of the bar with low mechanical input
impedance of the capacitor.
The best coupling between the electrical and mechanical modes occurs when ωem =
ω0, when the entire system is in resonance. But one issue with this is that Qem is
usually much lower than 106 and it is a challenge to increase this number for electrical
oscillators. The alternative is to detune ωem and set it to about 30% higher than the
two mechanical modes. This ensures that only a fraction of the energy is transferred
to the electrical mode, where it dissipates quickly. However, this method reduces the
bandwidth, as a lower β implies a smaller bandwidth.
Now that the displacement is encoded as an electric signal, it can be amplified using
SQUIDs and readout. Using this scheme, it has been possible to measure infinitesimal
changes of energy equivalent to the absorption of just O(100) quanta of ω0, or ∆E ∼
100h̄ω0. This means we can detect vibrations corresponding to around a 100 phonons
in a multi-ton object!

5 Noise Sources

In order to characterise different noise sources, we can look at two different metrics:

1. The minimum detectable energy deposited by a GW in order to overcome the
noise

2. The contribution of the component to the noise spectral density
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The output of the detector can be written in the form s(t) = h(t) + n(t), where
h(t) is caused by GWs and n(t) is due to noise. We have already seen that when
GWs are the only force acting on the bar, the corresponding displacement is given by
ξ̃(h) = T (ω)h̃(ω). Additionally, noise will give further contributions to the displacement
given by ξ̃(n) = T (ω)ñ(ω).
The noise spectral density Sn(ω) is related to the spectral density of the displacement
caused by that noise by

Snoise
ξ = |T (ω)|2Sn(ω), (18)

Where the spectral density of displacement is given by〈
ξ2(t)

〉
=

∫ ∞

0

dω

2π
Sξ(ω) (19)

Therefore, to compute the contribution to Sn(ω) due to a given noise source, say
thermal noise, we can compute the spectral density of the displacement induced by
this noise, and we then divide it by |T (ω)|2.

5.1 Thermal Noise

Thermal noise is due to the kinetic energy of the atoms of the detector. Intuitively,
the minimum detectable excitation in the presence of thermal noise for a bar at tem-
perature T should be

∆E ≈ kT

But this is not the case in high-Q mechanical oscillators, as shown by Weber, and the
figure is in fact much smaller. Here is an intuitive explanation of the same - since the
relaxation time τ0 for the fundamental mode of the bar is ∼ 10 min, the time needed
to cause fluctuations on the order of kT will also be ∼ τ0.
Therefore, if we sample the the state of the bar with time resolution ∆t, the minimum
GW energy detectable against the thermal noise would actually be

(∆Emin )thermal ≃ kT
∆t

τ0
, (20)

This is valid as long as ∆t ≥ τg, the timescale of the GW burst itself. This result
can also be derived by modelling the thermal noise by a stochastic force, the Nyquist
force. The full derivation involves statistical mechanics and is beyond the scope of this
report. The fluctuation-dissipation theorem states that for any linear system subjected
to an external force F (t) and having a velocity of v(t) = ẋ(t), the equation of motion
in the Fourier domain can always be written as

F̃ (ω) = Z(ω)ṽ(ω) (21)

This gives us an expression for SF (ω), the power spectrum of the force responsible for
causing thermal noise

SF (ω) = 4kT ReZ(ω) (22)

For a damped harmonic oscillator, Z is given by

Z = −im0

ω

(
ω2 − ω2

0 + iγ0ω
)
, (23)

Re Z = m0γ0 (24)
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We can now determine the noise spectral density due to thermal fluctuations consid-
ering the bar mode ξ0. Taking ṽ(ω) = −iωξ̃0(ω), Equation 21 gives us

ξ̃0(ω) =
1

−iωZ(ω)
F̃ (ω) (25)

Thus,

Sthermal
ξ (ω) =

1

ω2|Z(ω)|2
SF (ω) (26)

=
4kTmγ0
ω2|Z(ω)|2

. (27)

We can further substitute Z(ω) in terms of the transfer function of ξ0 to obtain

Sthermal
ξ (ω) =

4kTγ0
m0ω4

(
π2

2L

)2

|T0(ω)|2 (28)

Now, we finally get the noise spectral density due to the thermal noise using Equation
18 as

Sthermal
n (f) =

π

Q0

kT

Mv2s

f 3
0

f 4
(29)

After substituting m0 = M/2, L = πvs/ω0 and γ0 = ω0Q0.
Note that Sn(f) shows no distinct behaviour around the fundamental frequency f0,
and instead has a smooth frequency dependence going as f−4. This implies that if
thermal noise was the only source of noise, bars would be wideband instruments. We
will see that bars show narrowband behaviour only after incorporating read-out noise.
This equation also shows the importance of having a high quality factor.
If we repeat the same analysis including the complete bar-transducer system, the total
noise spectral density comes out to be

Sthermal
n (f) = Sthermal,bar

n (f) + Sthermal,trans
n (f) (30)

= π
kT

Mv2s

f 3
0

f 4

[
1

Q0

+
1

µQt

(f 2 − f 2
0 )

2
+ (ff0/Q0)

2

f 4
0

]

≈ π
kT

Mv2s

f 3
0

f 4

[
1

Q0

+
1

µQt

(f 2 − f 2
0 )

2

f 4
0

]
(31)

We see that this is a sum of the term we derived for the bar alone with a new term
representing the coupling. The first term inside the bracket is identical to the one
in Equation 29. The term ff0/Q

2 is negligible throughout the frequency range and
can be ignored. The total noise spectral density along with its components has been
plotted in Figure 6.
We observe that the transducer component disappears at f = f0 but becomes impor-
tant as we go away from the fundamental frequency. The noise profile is also minimum
at f0 rather than the fundamental modes f±.

5.2 Readout Noise

The next crucial noise component to consider is the noise introduced by the readout
scheme. The output of the capacitive transducer is a voltage V , but this needs to be
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Figure 6: Log of the components of thermal noise spectral density for the numerical
values Q0 = Qt = 2× 106, T = 1 K, M = 2300 kg, L = 3 m, vs = 5400 m/s, f0 = 915
Hz, µ = 2.4× 10−4

amplified further to be digitised and recorded. The amplifier would have an associated
wideband noise that can be described by the spectral density of the output potential,
SV . This can be taken to be approximately constant in the frequency range of interest.
As V = αξt, any error in measurement of V due to electronic noise would result in a
perceived error in ξt. This can be described by spectral density of the displacement

Sampl
ξt

=
1

α2
SV (32)

As both α and SV are nearly constant, Sampl
ξt

is approximately a white noise.
In order to quantitatively characterise this noise, we can again look at the energetic
and spectral features like we did for thermal noise. As before, a sampling time of ∆t
will give a bandwidth ∆f ≈ 1/∆t. Then, the fluctuations in ξ2t are given by〈

ξ2t (t)
〉
=

∫ f0+∆f/2

f0−∆f/2

dfSampl
ξt

= Sampl
ξt

∆f (33)

The minimum detectable energy is therefore given by

(∆Emin)ampl = mtω
2
0

〈
ξ2t (t)

〉
≃ mtω

2
0S

ampl
ξt

1

∆t
(34)

We see that this is inversely proportional to ∆t. This can be explained by the fact
that when the sampling time is small, bandwidth is large, causing the amplifier noise
to flood the output. Recall also that in the case of thermal noise we saw a MDE
proportional to ∆t. This implies that there must be an optimal sampling time to
optimise the overall MDE.
We can now proceed to look at the amplifier noise in terms of its spectral density,
Sampl
n (f). As before, we must find Sampl

t (f) and divide it by |Tt(ω)|2.
This gives us

Sampl
n (f) = A

[(
f 2 − f 2

+

)2
+ (ff0/Qm)

2
] [(

f 2 − f 2
−
)2

+ (ff0/Qm)
2
]

f 4f 4
0

(35)

Where A = π4

4L2S
ampl
ξt

. This has been plotted below. We see that the amplifier noise is
minimum at f±, unlike thermal noise.
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Figure 7: log10
[
Sampl
n (f)/A

]1/2
vs. frequency

5.3 Combining the Noises

We must now combine the aspects of both noise sources in order to get an overall view
of how noise impacts resonant bars. The minimum detectable energy comes out to be

∆Emin ∼ kT
∆t

τ
+mtω

2
0S

ampl
ξt

1

∆t
(36)

We can minimise this to give an optimal value of ∆t, which in turn yields a useful
bandwidth for this system. We can take the overall relaxation time of all three modes
to be τ = Q/ω0, where Q is the overall quality factor.

∆f ≃ 1

(∆t)opt
∼ π

f0
Q
Γ−1/2 (37)

where

Γ =
mtω

3
0S

ampl
ξt

4QkT

With typical values, of Q ∼ 106, Γ ∼ O(10−8 − 10−9), this gives us a useful band-
width ∆f = O(10− 100)Hz. The useful bandwidth is solely determined by the noise
characteristics, and has nothing to do with the resonance peak in the transfer function.
At ∆t = (∆t)opt, we get

∆Emin ∼ 2kT
(∆t)opt

τ
(38)

This can be written as
∆Emin = kTeff (39)

With an effective temperature Teff given by

Teff ∼ 4π

Q

f0
∆f

T ≃ 4Γ1/2T (40)

For typical values, this turns out to give Teff ≈ 2mK. This means that even with the
bar at a temperature of 2K, we can detect bursts that deposit an energy equivalent to
merely a few mK.
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Next, we consider the total noise spectral density

Sn(f) =
πkT

Mv2sf0

{
f 4
0

f 4

[
1

Q0

+
1

µQt

(f 2 − f 2
0 )

2

f 4
0

]

+
QΓ

µ

[(
f 2 − f 2

+

)2
+ (ff0/Qm)

2
] [(

f 2 − f 2
−
)2

+ (ff0/Qm)
2
]

f 4f 4
0

 (41)

Here, for given values of the quality factors and µ, the factor Γ determines the relative
importance of thermal and readout noise. This therefore also controls the bandwidth
∆f . We can see plots of the total noise spectral density for different values of Γ in
Figure 8.

(a) Amplifier noise dominates (b) Both noises comparable

(c) Thermal noise dominates(transducer too
light)

Figure 8: Total noise for different values of Γ
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This curve is quite similar to the strain sensitivity plot of resonant bar detectors.
Below is the observed strain sensitivity for the AURIGA detector, as of 2004.

Figure 9: Image credit : [3]

6 Conclusion

In this report, I have given a complete overview of the prevalent measurement tech-
niques used in resonant bar gravitational wave detectors, along with the noise con-
siderations involved. This is however, just a surface level overview of this vast topic.
Quantum effects also come into play and serve as an additional noise component, but
these play a relatively small role in resonant detectors compared to the thermal and
electronic noise. These do play an important in interferometric detectors.
Over decades of research in this field, several alternate detector schemes also emerged.
These include dual spherical detectors, which were proposed to utilise an optical read-
out system, like a Fabry-Perot cavities which are extensively used in detectors of today.
A lot of these ideas were promising but could not be brought to fruition due to is-
sues in practicality. Interferometric detectors ultimately dominated the field and have
proved to be exceptionally good at detecting GWs and are continually getting better.
Although several bar detectors have been shut down as a result of this, some of them
are still active, with efforts to cross-correlate signals with LIGO and proposals to use
them as probes of quantum gravity and dark matter.

References

[1] Odylio Denys Aguiar. Past, present and future of the resonant-mass gravitational
wave detectors. Research in Astronomy and Astrophysics, 11(1):1, Jan 2011.

[2] Michele Maggiore. Gravitational Waves. Vol. 1: Theory and Experiments. Oxford
Master Series in Physics. Oxford University Press, 2007.

[3] Francesco Ronga. Detection of gravitational waves with resonant antennas. Journal
of Physics: Conference Series, 39(1):18, may 2006.

12


	Introduction
	Measurement Challenges
	The double oscillator
	The resonant transducer
	Noise Sources
	Thermal Noise
	Readout Noise
	Combining the Noises

	Conclusion

